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A. Lee, R.H. Wands, and R.W. Fast 

Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A 

ABSTRACT 

When superconductor switches from a superconducting to a normal state, the 

current will move out of the superconductor and redistribute itself in the stabilizer. To 

study this cuntmt diffusion phenomenon in the conductor, a separation of variables method 

is used to directly solve the current diffusion equation for a rectangular composite 

conductor. The average power generation over the conductor cross section is obtained 

based on calculated the current density profile. An excess power generation term is found 

during the transition period, it decays exponentially with the time t. Finally, a comparison 

made between this approach and Devred solution shows a good agreement. 
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INTRODUCTION 

When a superconductor switches from a superconducting to a normal state, the 

current will move out of the superconductor and redistribute itself in the stabilizer. An 

excess Joule heat will be produced during this transition period of current diffusion. 

Devredl has studied this problem by using the magnetic field diffusion equation to derive 

the current density profile for a rectangular composite conductor. Luongo, Loya and 

Changz did a similar analysis by first solving the magnetic field equation, and then taking 

the derivative of B with respect to the direction of diffusion to get the current density. In 

this study, the cross-sectional area of conducror is assumed to be only aluminum by 

neglecting the copper-superconducting composite because the area ratio between these two 
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materials is about 15. A separation of variables method is used to directly solve for the 

current diffusion equation with the boundary conditions appropriate for a rectangular 

composite conductor. The average power generation per unit volume as function of time 

has been calculated by integrating J2(x,t) p over the cross-sectional area of the conductor. 

The energy generated per unit volume by the current is obtained by integrating the power 

curve with respect to time. 

COMPUTATIONAL METHOD 

Determination of the Current Density Profile 

The conductor used in this analysis is shown in Figure 1. It is assumed that the 

current is diffusing only along x axis. At time t=O, the current density is known since all 

the current flows in the very small area As, which is equal to the area of the 

superconducting composite. The integration of the current density over the cross-sectional 

area of conductor should be equal to the current I at any time t. A symmetry condition also 

gives a zero value of the first derivative of the current density with respected to x. The 

current density diffusion is therefore 

a2J(x, t) 1 aJ(x. t) =-.- 
ax2 Dm at 

with the boundary conditions 

$x=O,t)=O 

(1) 

(2) 

(3) j-J.dA= I 
A 

and the initial condition 
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JO OSxSd 

J(x,t = 0) = 

0 d<x<L 
(4) 

where , D,,, is the magnetic diffusivity which is equal to p/t&,, and Jo =I/As. 

I 
X 

1 

As 

2d 

Figure 1 Assumed conductor cross section 

Equation 1 with the boundary conditions given by Eq. 2 and 3 can not be 

immediately solved by a separation of variables because of the nonhomogeneous boundary 

condition given in Eq. 3. Therefore, Eq. 1 was separated into a partial differential 

equation with a homogeneous boundary condition, and an ordinary differential equation 

with a nonhomogeneous boundary condition. A solution of Eq. 1 of the form 

J(x,t)=v(x,t)+F(x) (3 

was assumed. Substituting Eq. 5 into the Eq. 1 yields 

a5 +a9 1 av - -=-.- 
ax* ax2 D, at 

(6) 
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with a boundary and initial condition given as 

z+)=(.J+dF) =o 
ax ax xco 

51,dA=J”(X,f).dA+5F(x).dA=I 
n A A 

J(x,f = 0) = v(x,t = 0) + F(x) 

The solution of F(x) is given by 

F(x)=Ax+B 

where the constant A and B are determined from 

(7) 

03) 

(9) 

(10) 

z/,=0 (11) 

(12) JF(x).dA=2i~.bdx=2BbL=I 
A II 

Therefore, Eq. 10 may be written 

F=I/(2bL) (13) 

To solve for v(x,t), assuming that v(x,t) can be written as the product of by two 

functions X(x) and T(t), 

v(x,t)=X(x)T(t) (14) 

The boundary condition can be obtained from Eq. 7 and 8, 

(3 _ 
= X’(0). T(f) = 0 

x-o 

Jv(x,t).dA=+(x).T(t).bdx=O 
A D 

(15) 

(16) 



and 

for all values oft. Therefore, 

T(f) + 0 

X’(0) = 0 

iX(x).dx=O 
0 

Now, the general solution for Eq.14 for the space variable x is 

X=Cl~sin~x+C2~cos/3x 

where Cl and C2 are constants. From Eq. 19 and 20, it gives Cl=O, and 

jX(x),dx=jC2,cospxrir=~sinpll:=~sinpr=O 
0 0 

For a nontrivial solution, C2#0, and 

sinp L = 0 

This equation is satisfied when 

p,=!y for n = 1,2,3 

Substituting these eigenvalues into Eq. 21, 

x, = c, cosp,x 

Next, solution of Eq. 14 for time variable t is 

T,(t) = Fn emDmpnt 

Fiially, v(x,t) may be written as the product of Eqs.25 and 26 

U(X,f) = 2 
“=I 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

where an=CnFn is an arbitrary constant, which is determined by applying the initial 

condition given by Eq.9 

a(w,t=O)=Ca;cos~x=I(x,f=O)-F(x) (28) 
n=, 
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Multiplying both sides of Eq.28 by cos(mx/L) and integrating from 0 to L, a, is given 

II, = 210 
---sin?.d n7-c 

Substituting Eq. 29 into Eq. 27, v(x,t) is found to be 

- 210 &y,t) = c.-. sin(!f,i). cos~x. ,-‘“p:’ 
II=, na 

and therefore, the complete solution of Eq. I is 

I(x,t) = ~.~~.sin(~d),cos~x.r-D~B:’ +A (31) 

The current density J(x,t), shown above, consists of two terms. The first term decays 

exponentially with time t, which characterizes the current diffusion transition period. The 

second term is the current density at the end of current diffusion. Integrating F.q.31 over 

the cross-sectional area of the conductor is the current I at any time t. 

Taking L=22 mm, b=4.37 mm, d=1.47 mm, and p=2.51xlO-8 R-mm, po=4~10-~ 

Hm, the current density as a function of position for different times can be calculated, 

Figure 2. At time t=O, the current density is nonzero over a very small area as expected. 

At time t > 0, the current diffuses into the stabilizer. After approximately 6 seconds, a 

steady state is reached and the current density is almost constant across the stabilizer. To 

verify this method, the conductor geometry used by Devred was used to calculate the 

current profile form Eq.31. The result of the two methods are shown in Figure 3; the 

agreement is very good. 
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Figure 2 Relative cumnt density profile. J(steady state)=I/(2Lb) 

7 



700 

600 

- 500 

? 
3 400 

2 
2 
3 300 
z 

% u 200 

100 

0 

-100 

0 2 4 6 8 IO 12 14 16 

stabilizer thickness (mm) 

Figure 3 Comparison between the results obtained with Eq. 31 and Dewed’s methe 

- t=o.oo s 
--.I t=0.10 s 

-- t=1.50 s 

A att=Os, n t=O.l s, l t=1.5 s. 



Determination of the Power Generation 

The power generated per unit volume can be calculated as 

q(x,t)=12(X,f).p 

The q(x,t) averaged over the conductor 

%(t)=~.~~.d~=~.jl’(x,i).P.dx 
A 0 

(32) 

(33) 

By substituting the current density from Eq.31 into Eq.33, 

jiv’~x,t).dx+j2~~x,1~~-dx+j(~)~~dx 
o 2bL (34 

0 0 

The first term in parenthesis is calculated from, 

v’(x,i).dx=~{(V,+~~+...+U,).(V,+U~+.-.+U.)}.dx=C~fUi,dx) (35) 
Cl 0 “=I 0 

since the integration of v,v, from 0 to L is zero for m+n. Equation 35 can now be easily 

integrated term by term 

(36) 

The second term in parenthesis in Eq.34 is equal to 0 and last term is equal to (I/2bL)zL 

The average power generated over the cross-sectional area of conductor becomes 

q,(t) = ,,g’,zd, .~(~.si~~~d),eD~B:‘)i+ &$ (37) 

Equation 37 also has two terms. The first term is an excess power generated during the 

transition period, which exponentially decays with time. The second term is the value when 

steady state is achieved, or when the current is uniformly diffused across the stabilizer. 

By using the same dimensions as before ( L=22 mm, b=4.37 mm, d=1.47 mm ), the 
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power generation as a function of time t was calculated and is shown in Figure 4. It can 

been seen that the power generation is initially very high compared with the steady state 

value. As the current diffuses into the adjacent stabilizer, the power generation decreases. 

After approximately 3 seconds, the excess power term has nearly decayed to zero and a 

steady state value has been reached. 

Determination of the Excess Energy 

It is of great interest to estimate the amount of excess energy produced during the 

aansition period; this is done by integrating the power over the transition time interval. 

Integrating the first term of Eq.37 from t=O to t=3 s, and comparing it to the second term of 

same equation integrated over the same time interval, it is found that the excess energy is 

approximately 50% higher than the steady state energy for this specific conductor 

geometry. The excess energy may have a big effect on the hot spot temperature and the 

normal zone propagation velocity. A similar calculation has been performed by using the 

Devred’s geometry; the comparison is shown in Table 1 and Figure 5. 

Table 1. Comparison of Excess Energy 

Method Excess Energy (J) Difference 

This paper, Eq.37 

Dewed 

88661 

89233 +0.6% 

CONCLUSION 

By using a separation of variables technique, the current diffusion equation is 

directly solved to estimate the excess energy during the diffusion period rather than solving 
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the B diffusion equation. It is found that the difference between the two approaches is 

negligible. It is justified that the assumption of neglecting copper-supercoducting composite 

is a reasonable assumption for the case of the conductor with a large aluminum stabilizer. 

In such case, the method presented in this paper avoids the calculation of the inverse 

Laplace transform, as well as the numerical solution for the eigenvalues. It is simple and 

easy to use. 
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Figure 4 Relative power generation as a function of the time for a L=22 mm, b=4.37 mm, 
d=1.47 mm aluminum stabilized conductor; q(steady state)=P(steady state&x 
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